M464 - Introduction To Probability II - Homework 14

Enrique Areyan
May 1, 2014

Chapter 6

Problems

6.1 Let $Y_{n}, n=0,1, \ldots$, be a discrete time, finite Markov chain with transition probabilities $\mathbf{P}=\left\|P_{i j}\right\|$, and let $\{N(t) ; t \geq 0\}$ be an independent Poisson process of rate λ. Argue that the compound process

$$
X(t)=Y_{N(t)}, \quad t \geq 0
$$

is a Markov chain in continuous time and determine its infinitesimal parameters.
Solution: That the compound process is an stochastic process in continuous time follows from the definition $X(t)=Y_{N(t)}$, where t is a real-valued parameter. Now, for the probabilities, we compute (for small h):

$$
\begin{array}{rlrl}
P_{i, j}(t) & =\operatorname{Pr}\{X(h)=j \mid X(0)=i\} & & \text { by def. of transition prob. } \\
& =\operatorname{Pr}\left\{Y_{N(h)}=j \mid Y_{N(0)}=i\right\} & & \text { by def. of } X(t) \\
& =\operatorname{Pr}\left\{Y_{N(h)}=j \mid Y_{0}=i\right\} & & \text { Since } N(t) \text { is a poisson process it follows } N(0)=0 \\
& =\sum_{k=0}^{\infty} \operatorname{Pr}\left\{Y_{k}=j \mid Y_{0}=i, N(h)=k\right\} \operatorname{Pr}\{N(h)=k\} & & \text { law of total prob. } \\
& =\sum_{k=0}^{\infty} \operatorname{Pr}\left\{Y_{k}=j \mid Y_{0}=i\right\} \operatorname{Pr}\{N(h)=k\} & & \text { equivalent event } \\
& =\sum_{k=0}^{\infty} P_{i j}^{(k)} \frac{e^{-\lambda h}(\lambda h)^{k}}{k!} & & \text { Since } N(h) \sim P o i s(\lambda h) \text { and by transition matrix of } Y_{n} \\
& =e^{-\lambda h} \sum_{k=0}^{\infty} \frac{P_{i j}^{(k)}(\lambda h)^{k}}{k!} & & \text { Rearranging terms } \\
=e^{-\lambda h}\left[0+\lambda h P_{i j}^{(1)}+o(h)\right] & & \text { Taylor expansion of } e^{x} \text { and the fact that } P_{i j}^{(0)}=0 \\
=e^{-\lambda h} \lambda h P_{i j}+o(h) & & \text { Distributive and properties of } o(h) \\
=\lambda h P_{i j}\left[\sum_{k=0}^{\infty} \frac{(-\lambda h)^{k}}{k!}+o(h)\right] & & \text { Taylor expansion of } e^{x} \\
=\lambda h P_{i j}[1+(-\lambda h)+o(h)] & & \text { Taking first few terms and using } o(h) \\
=\lambda h P_{i j}+o(h) & \text { Rearranging terms }
\end{array}
$$

Therefore, $q_{i j}=\lambda P_{i j}$
6.3 Let $X_{1}(t), X_{2}(t), \ldots, X_{N}(t)$ be independent two-state Markov chains having the same infinitesimal matrix

$$
\mathbf{A}=\begin{gathered}
\\
0 \\
1
\end{gathered}\left\|\begin{array}{cc}
0 & 1 \\
-\lambda & \lambda \\
\mu & -\mu
\end{array}\right\|
$$

Determine the infinitesimal matrix for the Markov chain $Z(t)=X_{1}(t)+\cdots+X_{N}(t)$.
Solution: First note that $Z(t) \in\{0,1,2, \ldots, N-1, N\}$ since each $X_{i}(t)$, for $1 \leq i \leq N$, can only either increment to 1 or decrement to 0 . Hence, the sum is at least $0\left(\right.$ all $\left.X_{i}(t)=0\right)$ or $N\left(\right.$ all $\left.X_{i}(t)=1\right)$. The infinitesimal matrix is a N by N matrix with the rates of change from state i to state j. Now, since these are infinitesimal rates, we can only have
numbers distinct from zero when incrementing or decrementing by one or staying the same. For instance, for small h the rate going from state 0 to state 1 can be computed as follow:

$$
\begin{aligned}
\operatorname{Pr}\{Z(h)=1 \mid Z(0)=0\} & =\operatorname{Pr}\left\{\text { exactly one } X_{i} \text { changes from } 0 \text { to } 1\right\} \\
& =\binom{N}{1}[\lambda h+o(h)](1-\lambda h-o(h))^{n-1} \\
& =[N \lambda h+o(h)]\left(\sum_{k=0}^{n-1}(1-\lambda h)^{k} o(h)^{n-1-k}\right) \\
& =N \lambda h+o(h) \text { (since all other terms above are } o(h)
\end{aligned}
$$

In a similar manner one can compute all other infinitesimal parameters. The values depend mainly on how many $X^{\prime} s$ are in state i at a given time. Hence, the complete infinitesimal matrix is:

